Macaque supplementary eye field neurons encode object-centered locations relative to both continuous and discontinuous objects.
نویسندگان
چکیده
Many neurons in the supplementary eye field (SEF) of the macaque monkey fire at different rates before eye movements to the right or the left end of a horizontal bar regardless of the bar's location in the visual field. We refer to such neurons as carrying object-centered directional signals. The aim of the present study was to throw light on the nature of object-centered direction selectivity by determining whether it depends on the reference image's physical continuity. To address this issue, we recorded from 143 neurons in two monkeys. All of these neurons were located in a region coincident with the SEF as mapped out in previous electrical stimulation studies and many exhibited task-related activity in a standard saccade task. In each neuron, we compared neuronal activity across trials in which the monkey made eye movements to the right or left end of a reference image. On interleaved trials, the reference image might be either a horizontal bar or a pair of discrete dots in a horizontal array. The dominant effect revealed by this experiment was that neurons selectively active before eye movements to the right (or left) end of a bar were also selectively active before eye movements to the right (or left) dot in a horizontal array. An additional minor effect, present in around a quarter of the sample, took the form of a difference in firing rate between bar and dot trials, with the greater level of activity most commonly associated with dot trials. These phenomena could not be accounted for by minor intertrial differences in the physical directions of eye movements. In summary, SEF neurons carry object-centered signals and carry these signals regardless of whether the reference image is physically continuous or disjunct.
منابع مشابه
Macaque SEF neurons encode object-centered directions of eye movements regardless of the visual attributes of instructional cues.
Macaque SEF neurons encode object-centered directions of eye movements regardless of the visual attributes of instructional cues. Neurons in the supplementary eye field (SEF) of the macaque monkey exhibit object-centered direction selectivity in the context of a task in which a spot flashed on the right or left end of a sample bar instructs a monkey to make an eye movement to the right or left ...
متن کاملDavid E . Moorman and Carl R . Olson Macaque Supplementary Eye Field Object - Centered Location and Saccade Direction in Combination of Neuronal Signals Representing
Viewer/Itinerary Planner. Washington, DC: Society for Neuroscience, 2004, On-line. Brotchie PR, Andersen RA, Snyder LH, Goodman SJ. Head position signals used by parietal neurons to encode locations of visual stimuli. Nature
متن کاملImpact of experience on the representation of object-centered space in the macaque supplementary eye field.
Many neurons in the macaque supplementary eye field (SEF) exhibit object-centered spatial selectivity, firing at different rates when the monkey plans a saccade to the left or right end of a horizontal bar. Is this property natural to the SEF or is it a product of specialized training in the laboratory? To answer this question, we monitored the activity of single SEF neurons in two monkeys befo...
متن کاملNeurons with object-centered spatial selectivity in macaque SEF: do they represent locations or rules?
In macaque monkeys performing a task that requires eye movements to the leftmost or rightmost of two dots in a horizontal array, some neurons in the supplementary eye field (SEF) fire differentially according to which side of the array is the target regardless of the array's location on the screen. We refer to these neurons as exhibiting selectivity for object-centered location. This form of se...
متن کاملCombination of neuronal signals representing object-centered location and saccade direction in macaque supplementary eye field.
Neurons in the macaque supplementary eye field (SEF) fire at different rates in conjunction with planning saccades in different directions. They also exhibit object-centered spatial selectivity, firing at different rates when the target of the saccade is at the left or right end of a horizontal bar. To compare the rate of incidence of the two kinds of signal, and to determine how they combine, ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of neurophysiology
دوره 83 4 شماره
صفحات -
تاریخ انتشار 2000